Designers’ guide to Eurocode 3: Design of Steel Structures (L Gardner and D A Nethercot) Thomas Telford

Access Steel – website that provides much information on design to EC3

‘Access Steel is a unique electronic resource to ensure that the European steel construction community takes maximum advantage from the commercial opportunities arising from the Eurocodes. With input from six leading institutes for steel construction in Europe, it provides harmonised information for clients, architects and engineers on:

- multi storey commercial buildings
- single storey buildings
- residential construction
- fire safety engineering’

http://www.access-steel.com/
Partners

Steel Construction Institute (SCI) (UK)
Centre Technique Industriel de la Construction Metallique (CTICM) (France)
Stalbyggnadsinstutet – Swedish Institute of Steel Construction (SBI) (Sweden)
Rheinish-Westfalische Technische Hochschule Aachen (RWTH) (Germany)
Labein Tecnalia (Spain)
Profilarbed Research (PARE) (Luxembourg)

Sponsors

Arcelor-Mittal, Corus, Peiner Träger, Voest Alpine, Ruuki, Dillinger, SSAB
EN 1993-1-1: General rules and rules for buildings
EN 1993-1-2: Structural fire design
EN 1993-1-3: Cold formed thin gauge members and sheeting
EN 1993-1-4: Structures in stainless steel
EN 1993-1-5: Strength and stability of planar plated structures without transverse loading
EN 1993-1-6: Strength and stability of shell structures
EN 1993-1-7: Strength and stability of plate structures loaded transversally
EN 1993-1-8: Design of joints
EN 1993-1-9: Fatigue strength
EN 1993-1-10: Fracture toughness assessment
EN 1993-1-11: Design of structures with tension components made of steel
EN 1993-1-12: Use of high strength steels
Symbols

<table>
<thead>
<tr>
<th>BS5950</th>
<th>A</th>
<th>x,y</th>
<th>r</th>
<th>Z</th>
<th>S</th>
<th>I</th>
<th>J</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC3</td>
<td>A</td>
<td>y,z</td>
<td>i</td>
<td>W_{el}</td>
<td>W_{pl}</td>
<td>I</td>
<td>I_t</td>
<td>I_w</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BS5950</th>
<th>p_y</th>
<th>p_b</th>
<th>p_c</th>
<th>P</th>
<th>M</th>
<th>V</th>
<th>B,D</th>
<th>d</th>
<th>T,t</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC3</td>
<td>f_y</td>
<td>$\chi_{LT} f_y$</td>
<td>χf_y</td>
<td>N</td>
<td>M</td>
<td>V</td>
<td>B,h</td>
<td>d</td>
<td>t_f, t_w</td>
</tr>
</tbody>
</table>
Table 3.1: f_y f_u

Clause 3.2.6 $E = 210000 \text{ N/mm}^2$ \quad $G \approx 81000 \text{ N/mm}^2$, $\nu = 0.3$

<table>
<thead>
<tr>
<th>Thickness Interval</th>
<th>f_y (N/mm2)</th>
<th>f_u (N/mm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t < 40 \text{ mm}$</td>
<td>275</td>
<td>430</td>
</tr>
<tr>
<td>$40 \text{ mm} < t < 80 \text{ mm}$</td>
<td>255</td>
<td>410</td>
</tr>
</tbody>
</table>

Material properties taken from EN 10025-2, which gives additional values for different thicknesses.

So for S275 $16 \text{ mm} < t < 40 \text{ mm}$ $f_y = 265 \text{ N/mm}^2$. Table 3.1 is a simplification of EN 10025-2.

5.5 Classification of cross sections

Table 5.2 \{ $\varepsilon = \sqrt{(235/f_y)}$ \} \quad Class 1,2,3,4
5 Structural Analysis

5.1.1 (2) Calculation model and basic assumptions should reflect structural behaviour.
5.1.2 (2) Depending on joint behaviour – simple, continuous, semi-continuous
5.2.1 (3) First order analysis when $\alpha_{cr} = \frac{F_{cr}}{F_{Ed}} \geq 10$ elastic analysis
 ≥ 15 plastic analysis

F_{cr}: Elastic critical buckling load \hspace{1cm} F_{Ed}$: Design load
5.2.1(4) For portal frames and beam-column plane frames, providing axial compression in beams/rafters is not significant,

\[\alpha_{cr} = \left(\frac{H_{Ed}}{V_{Ed}} \right) \left(\frac{h}{\delta_{H,Ed}} \right) \]

provided \(\overline{\lambda} < 0.3 \sqrt{\frac{Af_y}{N_{Ed}}} \)

which translates as \(\frac{N_{Ed}}{N_{cr}} \leq 0.09 \)

\(H_{Ed} \): Design horizontal load at bottom of storey
\(V_{Ed} \): Design vertical load at bottom of storey
\(h \): Storey height
\(\delta_{H,Ed} \): Horizontal displacement of top of storey relative to bottom of storey
5.2.2 Structural stability of frames

5.2.2 (3) b) Second order effects accounted for partially by global analysis and partially through individual member stability checks according to 6.3

5.2.2 (5) If $\alpha_{cr} \geq 3$, amplify all horizontal loads by

$$\frac{1}{1 - \frac{1}{\alpha_{cr}}}$$

If $\alpha_{cr} < 3$, second order analysis is necessary

Second order effects likely to arise in unbraced structures and in bracing design of braced structures
5.3 Imperfections

5.3.2 (3) a) Global initial sway imperfection: \(\varphi = \varphi_0 \times \alpha_h \times \varphi_m \)

\(\varphi_0 \): Initial value = 1/200
\(\alpha_h \): Reduction factor for column height = \(2/\sqrt{h} \) (\(2/3 \leq \alpha_h \leq 1 \))
(h: structure height)
\(\varphi_m \): Reduction factor for number of columns in a row =

\[
\sqrt{0.5 \left(1 + \frac{1}{m}\right)}
\]

Recommendation (SCI) - use \(\varphi_0 \) i.e let \(\alpha_h = \varphi_m = 1.0 \)
5.3.2 (3) b) Relative initial local bow imperfection (Table 5.1)
5.3.4 (1) ..taken into account using checks in 6.3 provided

\[\bar{\lambda} < 0.5 \sqrt{\frac{A f_y}{N_{Ed}}} \]

which translates as \(N_{Ed}/N_{cr} \leq 0.25 \)

Use equivalent horizontal forces (EHF’s) for all load combinations
6 Ultimate limit states

6.1 Material factors γ_M

$\gamma_{M0} = 1.00$ (cross-sections) $\gamma_{M1} = 1.00$ (Buckling)

$\gamma_{M2} = 1.25$ (Fracture) (1.1 in UK)

6.2.3 Tension

(1) $N_{Ed} \leq N_{t,Rd}$

(2) $N_{pl,Rd} = A_f y / \gamma_{M0}$ gross section

(3) $N_{u,Rd} = 0.9 A_{net} f_u / \gamma_{M2}$ bolt holes

EN 1993-1-8: 4.13(2) For equal angle leg or unequal angle connected (by welding) by its larger leg $A_{eff} = A_{gross}$

EN 1993-1-8: 3.10.3(2) $N_{u,Rd}$ – formulae for resistance of angle connected through one leg using 1, 2 or 3+ bolts
6.2.4 Compression

(1) $N_{Ed} \leq N_{c,Rd}$

(2) $N_{c,Rd} = Af_y/\gamma_M (\text{class 1,2,3})$
 $A_{eff}f_y/\gamma_M (\text{class 4})$

EN 1993-1-5 Clause 4.4:
A_{eff} is determined by excluding ineffective portion of section.
6.2.5 Bending moment

(1) $$M_{Ed} \leq M_{c,Rd}$$

(2) $$M_{c,Rd} = M_{pl,Rd} = \frac{W_{pl} f_y}{\gamma_{M0}} \text{ (class 1,2)}$$
$$= \frac{W_{el,min} f_y}{\gamma_{M0}} \text{ (class 3)}$$
$$= \frac{W_{eff,min} f_y}{\gamma_{M0}} \text{ (class 4)}$$

(4) Fastener holes in tension flange may be ignored provided:
$$A_{f,net} \frac{0.9 f_u}{\gamma_{M2}} \geq A_f \frac{f_y}{\gamma_{M0}}$$
6.2.6 Shear

(1) \(V_{Ed} \leq V_{c,Rd} \)

(2) \(V_{pl,Rd} = A_v (f_y / \sqrt{3}) / \gamma_{M0} \)

(3) I section \(A_v = A - 2bt_f + (t_w + 2r)t_f \) but not less than \(\eta h_w t_w \)

(6) Shear buckling if \(h_w/t_w > 72 \varepsilon / \eta \)

\(\eta \) may be conservatively taken as 1

EN1993-1-5 Clause 5.1 Note 2: \(\eta = 1.2 \) up to and including S460; otherwise 1

6.2.8 Bending and shear

(2) \(V_{Ed1} \leq 0.5V_{pl,Rd} \) – no effect on \(M_{c,Rd} \)

(3) Reduced moment resistance: reduced design yield strength \((1-\rho)f_y\)

\[\rho = \left(\frac{2V_{Ed}}{V_{pl,Rd}} - 1 \right)^2 \]
6.2.9 Bending and axial force

6.2.9.1 Class 1 and 2 cross-sections
(4) Axial force can be ignored:

yy axis: if $N_{Ed} \leq 0.25N_{pl,Rd}$ and $N_{Ed} \leq 0.5h_w t_w f_y/\gamma_{M0}$

zz axis: if $N_{Ed} \leq h_w t_w f_y/\gamma_{M0}$

(5) Values of reduced moment capacities: $M_{N,y,Rd}$, $M_{N,z,Rd}$

(6) $\left[\frac{M_{y,Ed}}{M_{N,y,Rd}} \right]^{\alpha} + \left[\frac{M_{z,Ed}}{M_{N,z,Rd}} \right]^{\beta} \leq 1$
Conservative alternative for all sections: 6.2.1 (7)

\[
\frac{N_{Ed}}{N_{Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1 \quad \text{Eq 6.2}
\]

As buckling is generally critical and will ‘override’ Eq. 6.2, the more exact equations in 6.2.9 need not generally be considered.
6.3 Buckling resistance of members

Elastic buckling theory (Euler)

\[N_{cr} = \pi^2 \frac{EI}{l^2} \] for ideal strut

This value is modified by various imperfections:

- Geometric imperfections (initial curvature)
- Eccentricity of loading
- Residual stresses (‘locked-in’ due to differential cooling)
- Non-homogeneity of material properties
- End restraints

These are taken into account in the Perry-Robertson formula
\[
\sigma_{cr} = \frac{\sigma_y + (1 + \eta)\sigma_E}{2} - \sqrt{\left(\left(\sigma_y + (1 + \eta)\sigma_E \right)/2 \right)^2 - \sigma_y \sigma_E}
\]

EC3 provides solution for this equation. Effectively \(\sigma_{cr} = \chi f_y \)
6.3.1 Uniform members in compression

6.3.1.1 Buckling resistance

(1) \(N_{Ed} \leq N_{b,Rd} \)

(3) \(N_{b,Rd} = \chi A f_y / \gamma_{M1} \) (class 1,2,3)

\(\chi A_{eff} f_y / \gamma_{M1} \) (class 4)
6.3.1.2 Buckling curves

(1)

\[
\chi = \frac{1}{\varphi + \sqrt{\varphi^2 - \bar{\lambda}^2}} \quad \text{(but } \leq 1) \quad \varphi = 0.5\left[1 + \alpha(\bar{\lambda}^2 - 0.2) + \bar{\lambda}^2\right]
\]

\[
\bar{\lambda} = \sqrt{\frac{A f_y}{N_{cr}}} \quad \text{(class 1,2,3)} \quad \bar{\lambda} = \sqrt{\frac{A_{eff} f_y}{N_{cr}}} \quad \text{(class 4)}
\]

\(\alpha \): imperfection factor (Table 6.1) (Table 6.2)

\(N_{cr} \): Elastic critical buckling load

\(\chi \) (chi) can also be obtained from Figure 6.4

(4) If \(\bar{\lambda} \leq 0.2 \) (\(N_{Ed} \leq 0.04N_{cr} \)) buckling effects can be ignored
6.3.1.3 Slenderness for flexural buckling

\[f_{cr} = \frac{N_{cr}}{A} = \pi^2 \frac{EI}{Al^2} = \pi^2 \frac{EAi^2}{Al^2} = \pi^2 \frac{E}{\lambda^2} \]

Letting \(f_{cr} = f_y \) limiting slenderness \(\lambda_1 = \pi \left(\frac{E}{f_y} \right)^{0.5} = 93.9 \varepsilon \)
\(\lambda = \frac{L_{cr}}{i_z} \)

\[\bar{\lambda} = \frac{\lambda}{\lambda_1} : \text{non-dimensional slenderness} \]

(ratio of actual slenderness to slenderness at boundary between yielding and elastic buckling) = \(\pi (E/f_{cr})^{0.5} / (\pi (Ef_y)^{0.5}) = (f_y/f_{cr})^{0.5} \)

\[= \sqrt{\frac{Af_y}{N_{cr}}} \]
6.3.2 Uniform members in bending

Beam behaviour analogous to column behaviour
Beam subject to equal moments at each end

\[M_{cr} = \frac{\pi^2 EI_z}{L_{cr}^2} \left[\frac{I_w}{I_z} + \frac{L_{cr}^2 GI_t}{\pi^2 EI_z} \right]^{0.5} \]

This is expanded to:

\[M_{cr} = C_1 \frac{\pi^2 EI_z}{L_{cr}^2} \left[\left(\frac{k}{k_w} \right)^2 \frac{I_w}{I_z} + \frac{L_{cr}^2 GI_t}{\pi^2 EI_z} + C_2 z_g^2 \right]^{0.5} - C_2 z_g \]

for other load situations.
M_{cr}: Elastic critical buckling load

C_1, C_2, k, k_w: constants
z_g: Eccentricity of load relative to centroid of beam (destabilizing load)
C_1: depends on moment diagram
k, k_w: depend on support conditions (generally 1)
C_2: does not apply when $z_g = 0$ (non destabilizing loads)
NCCI SN003a-EN-EU and NCCI SN006a-EN-EU (cantilevers) provide information on calculation of M_{cr}.
Program to calculate M_{cr} can be downloaded from http://www.cticm.eu

The results for buckling and lateral torsional buckling are similar to those in BS5950 (Annex C – buckling (exact), Annex B – lateral torsional buckling)

6.3.2.1 Buckling resistance

(1) $M_{Ed} \leq M_{b,Rd}$
(3) $M_{b,Rd} = \chi_{LT} W_y f_y / \gamma_{M1}$

$W_y = W_{pl,y}$ (class 1,2) $W_y = W_{el,y}$ (class 3) $W_y = W_{eff,y}$ (class 4)
6.3.2.2 Lateral torsional buckling curves – General case

(1) \[\chi_{LT} = \frac{1}{\varphi_{LT} + \sqrt{\varphi_{LT}^2 - \overline{\lambda}_{LT}^2}} \]
 (but \(\leq 1 \))

\[\varphi_{LT} = 0.5\left[1 + \alpha_{LT} \left(\overline{\lambda}_{LT}^2 - 0.2\right) + \overline{\lambda}_{LT}^2\right] \]

\[\overline{\lambda}_{LT} = \sqrt{\frac{W_y f_y}{M_{cr}}} \]

\(\alpha_{LT} \): imperfection factor (Table 6.3) (Table 6.4)

(3) \(\chi_{LT} \) can also be obtained from Figure 6.4

(4) If \(\overline{\lambda}_{LT} \leq 0.4 \) (\(M_{Ed} \leq 0.16 M_{cr} \)) buckling effects can be ignored
NCCII SN002a: Simplified assessment of

\[
\bar{\lambda}_{LT} = \frac{1}{\sqrt{C_1}} 0.9 \frac{\lambda_z}{\lambda_1}
\]

where \(\lambda_z = L_{cr}/i_z \), \(\lambda_1 = \pi \sqrt{E/f_y} \)

<table>
<thead>
<tr>
<th>(\Psi = M_1/M_2)</th>
<th>(C_1) (Designers’ Guide)</th>
<th>(C_1) (SN003a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.000</td>
<td>1.00</td>
</tr>
<tr>
<td>.75</td>
<td>1.141</td>
<td>1.14</td>
</tr>
<tr>
<td>.5</td>
<td>1.323</td>
<td>1.31</td>
</tr>
<tr>
<td>.25</td>
<td>1.563</td>
<td>1.62</td>
</tr>
<tr>
<td>0</td>
<td>1.879</td>
<td>1.77</td>
</tr>
<tr>
<td>-.25</td>
<td>2.281</td>
<td>2.05</td>
</tr>
<tr>
<td>-.5</td>
<td>2.704</td>
<td>2.33</td>
</tr>
<tr>
<td>-.75</td>
<td>2.927</td>
<td>2.57</td>
</tr>
<tr>
<td>-1</td>
<td>2.752</td>
<td>2.55</td>
</tr>
<tr>
<td>pinned, udl</td>
<td>1.132</td>
<td>1.127</td>
</tr>
<tr>
<td>pinned, central P</td>
<td>1.365</td>
<td>1.348</td>
</tr>
</tbody>
</table>

\[
C_1 = 1.88 - 1.4\psi + 0.5 \psi^2 \quad (C_1 \leq 2.70)
\]
6.3.2.3 Lateral torsional buckling curves for rolled sections or equivalent welded sections

(1) For members in bending (beams)

\[\chi_{LT} = \frac{1}{\phi_{LT} + \sqrt{\phi_{LT}^2 - \beta \lambda_{LT}^2}} \]

but \(\leq 1 \) and \(\leq \frac{1}{\lambda_{LT}^2} \)

\[\phi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\lambda_{LT}^2 - \lambda_{LT,0} \right) + \beta \lambda_{LT}^2 \right] \]

\[\lambda_{LT,0} = 0.4 \]

\[\beta = 0.75 \]
\(\alpha_{LT} \): imperfection factor (Table 6.3) (Table 6.5)

\[(2) \chi_{LT,mod} = \chi_{LT}/f \quad (\leq 1) \]

\[
f = 1 - 0.5(1 - k_c \left[1 - 2.0(\bar{\lambda}_{LT} - 0.8)^2\right]) \quad (\leq 1)\]

\(k_c \): Table 6.6

6.3.2.3 used for rolled sections of ‘standard’ dimensions
6.3.2.2 can be used for all sections including plate girders (bigger than ‘standard’ sections), castellated and cellular beams
Members which are subjected to combined bending and axial compression should satisfy:

\[
\frac{N_{Ed}}{\chi_y N_{Rk}} + k_{yy} \frac{M_{y,Ed}}{\chi_{LT} \frac{M_{y,Rk}}{\chi_{y} N_{Rk}}} + k_{yz} \frac{M_{z,Ed}}{\chi_{LT} \frac{M_{z,Rk}}{\chi_{z} N_{Rk}}} \leq 1
\]

(6.61)

\[
\frac{N_{Ed}}{\chi_z N_{Rk}} + k_{zy} \frac{M_{y,Ed}}{\chi_{LT} \frac{M_{y,Rk}}{\chi_{y} N_{Rk}}} + k_{zz} \frac{M_{z,Ed}}{\chi_{LT} \frac{M_{z,Rk}}{\chi_{z} N_{Rk}}} \leq 1
\]

(6.62)

where \(N_{Ed}, M_{y,Ed}\) and \(M_{z,Ed}\) are the design values of the compression force and the maximum moments about the y-y and z-z axis along the member, respectively.

\(\Delta M_{y,Ed}, \Delta M_{z,Ed}\) are the moments due to the shift of the centroidal axis according to 6.2.9.3 for class 4 sections, see Table 6.7.

\(\chi_y\) and \(\chi_z\) are the reduction factors due to flexural buckling from 6.3.1

\(\chi_{LT}\) is the reduction factor due to lateral torsional buckling from 6.3.2

\(k_{yy}, k_{yz}, k_{zx}, k_{zz}\) are the interaction factors

Table 6.7: Values for \(N_{Rk} = f_y A_i, M_{y,Rk} = f_y W_i\) and \(\Delta M_{y,Ed}\)

<table>
<thead>
<tr>
<th>Class</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_i)</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>(A_{eff})</td>
</tr>
<tr>
<td>(W_i)</td>
<td>(W_{pl,y})</td>
<td>(W_{pl,y})</td>
<td>(W_{pl,y})</td>
<td>(W_{pl,y})</td>
</tr>
<tr>
<td>(W_E)</td>
<td>(W_{pl,z})</td>
<td>(W_{pl,z})</td>
<td>(W_{pl,z})</td>
<td>(W_{pl,z})</td>
</tr>
<tr>
<td>(\Delta M_{y,Ed})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(c_{Ny} N_{Ed})</td>
</tr>
<tr>
<td>(\Delta M_{z,Ed})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(c_{Nz} N_{Ed})</td>
</tr>
</tbody>
</table>

NOTE For members not susceptible to torsional deformation \(\chi_{LT}\) would be \(\chi_{LT} = 1.0\).

(5) The interaction factors \(k_{yy}, k_{yz}, k_{zx}, k_{zz}\) depend on the method which is chosen.

NOTE 1 The interaction factors \(k_{yy}, k_{yz}, k_{zx}, k_{zz}\) have been derived from two alternative approaches. Values of these factors may be obtained from Annex A (alternative method 1) or from Annex B (alternative method 2).

NOTE 2 The National Annex may give a choice from alternative method 1 or alternative method 2.

NOTE 3 For simplicity verifications may be performed in the elastic range only.
6.3.3 Uniform members in bending and compression

For Class 1, 2, 3 sections, Equations 6.61 and 6.62 reduce to:

\[
\frac{N_{Ed}}{N_{b,y,Rd}} + k_y \frac{M_{y,Ed}}{M_{b,Rd}} + k_z \frac{M_{z,Ed}}{M_{c,z,Rd}} \leq 1 \quad \text{Eq. 6.61}
\]

\[
\frac{N_{Ed}}{N_{b,z,Rd}} + k_{zy} \frac{M_{y,Ed}}{M_{b,Rd}} + k_{zz} \frac{M_{z,Ed}}{M_{c,z,Rd}} \leq 1 \quad \text{Eq. 6.62}
\]
k values in Annex A, Annex B.
Annex A is more precise (French-Belgian)
Annex B is easier to use (Austrian-German)

Table B.3:
If $\psi = 1$ (uniform moment in column – no lateral load on column)
$C_{my} = C_{mz} = C_{mLT} = 1$
If $\psi = 0$ (M varies from 0 to M_{max} – no lateral load on column)
$C_{my} = C_{mz} = C_{mLT} = 0.6$
Members susceptible to torsional deformations:
(Table B.2/ Table B.1)
\(\overline{\lambda}_z < 0.4 \) (I sections)

\[
k_{zy} = \text{MAX} \left[1 - \frac{0.1 \overline{\lambda}_z}{(C_{mLT} - 0.25) \frac{N_{Ed}}{N_{b,z,Rd}}} \right], \left[1 - \frac{0.1}{(C_{mLT} - 0.25) \frac{N_{Ed}}{N_{b,z,Rd}}} \right]
\]

\[
k_{yy} = \text{MIN} \left[C_{my} \left[1 + (\overline{\lambda}_y - 0.2) \frac{N_{Ed}}{N_{b,y,Rd}} \right], C_{my} \left[1 + 0.8 \frac{N_{Ed}}{N_{b,y,Rd}} \right] \right]
\]

\[
k_{zz} = \text{MIN} \left[C_{mz} \left[1 + (2 \overline{\lambda}_z - 0.6) \frac{N_{Ed}}{N_{b,z,Rd}} \right], C_{mz} \left[1 + 1.4 \frac{N_{Ed}}{N_{b,z,Rd}} \right] \right]
\]

\[
k_{yz} = 0.6k_{zz} \quad k_{zy} = 0.6k_{yy}
\]
For columns in simple construction N generally dominates, UC sections are less likely to buckle about yy axis → Equation 6.62 likely to be critical. As N dominates, k values can be chosen conservatively. Access Steel (NCCI SN048b-EN-GB) suggests $k_{zy} = 1, k_{zz} = 1.5$ (conservatively)
7 Serviceability limit states

Deflections to be agreed with client – BS5950 values proposed in UK National Annex
Guidance is also provided in NCCI SN034a-EN-EU

Cantilever: Length/180
Beams carrying plaster or other brittle finish: Span/360
Other beams: Span/200
Horizontal deflection limits also provided
EN 1993-1-8 Design of Joints

Table 2.1 Partial safety factors for joints
Bolts, Plates in bearing, Welds $\gamma_{M2} = 1.25$ (UK: 1.5 for grade 4.6)
Slip resistance at sls $\gamma_{M3,ser} = 1.1$
Preload of high strength bolts $\gamma_{M7} = 1.1$

2.5 Design Assumptions (1) Joints should be designed on the basis of a realistic assumption of the distribution of internal forces and moments. Identify a load path through the joint and check ‘all links in chain’.
2.7 Eccentricity at connections
Table 3.1 Bolt strength f_y, f_u

3 Connections made with bolts, rivets or pins
3.1.2 Preloaded bolts
Table 3.2
Bearing: $F_{v,Ed} \leq F_{v,Rd}$ $F_{v,Ed} \leq F_{b,Rd}$
Slip (sls): $F_{v,Ed,ser} \leq F_{v,Rd,ser}$ $F_{v,Ed} \leq F_{v,Rd}$ $F_{v,Ed} \leq F_{b,Rd}$
(use grade 8.8 or 10.9)
Tension: Include prying action
Table 3.3 End, edge distances (e) Spacings (p)
(d₀ – bolt hole diameter)
e₁, p₁: Parallel to load e₂, p₂: Perpendicular to load
3.6.1 (2) Preload in bolts: \(F_{p,Cd} = 0.7 \, f_{ub} \, A_s / \gamma_{M7} \)
(10) Single lap joints with one bolt row
(12) Bolts through packing

Table 3.4 Design resistance
Shear resistance \(F_{v,Rd} = \alpha_v \, f_{ub} \, A_s / \gamma_{M2} \) \(\alpha_v = 0.6 \) or 0.5
Bearing resistance \(F_{b,Rd} = k_1 \, a_b \, f_u \, d \, t / \gamma_{M2} \)
\(a_b = \text{Min.} \, (a_d, f_{ub}/f_u, 1) \) end bolts \(a_d = e_1/3d_0 \)
inner bolts \(a_d = p_1/3d_0 - 0.25 \)
\(k_1 = \text{Min.} \, (2.8 \, e_2/d_0 -1.7, 2.5) \) edge bolts
\(k_1 = \text{Min.} \, (1.4 \, e_2/d_0 -1.7, 2.5) \) inner bolts

Tension & Combined Shear and Tension also included
3.8 Long joints

3.9 Design slip resistance

\[F_{s,Rd} = (k_s n \mu) F_{p,C} / \gamma_{M3} \]

\(k_s = 1 \) for bolts in normal holes (Table 3.6)
\(n \) is the number of friction surfaces
\(\mu \): slip factor (Table 3.7)

Class A: shot/ grit blasted, spray metallised with aluminium or zinc based coating certified to provide a slip factor of 0.5
Class B: shot/ grit blasted, painted with alkali-zinc silicate paint to produce a thickness of 50 – 80 µm
Class C: wire brushed or flame cleaned
Class D: untreated

3.10.2 Design for block tearing

(2) \[V_{eff,1,Rd} = f_u A_{nt} / \gamma_{M2} + (1/\sqrt{3}) f_y A_{nv} / \gamma_{M0} \]
Eq 3.9

(3) \[V_{eff,2,Rd} = 0.5 f_u A_{nt} / \gamma_{M2} + (1/\sqrt{3}) f_y A_{nv} / \gamma_{M0} \]
Eq 3.10
Section 4 Welded connections

4.5.2 Effective throat thickness
4.5.3.2 Directional method
4.5.3.3 Simplified method for the design resistance of fillet weld

(1) \(F_{w,Ed} \leq F_{w,Rd} \)

(2) \(F_{w,Rd} = f_{vw,d} \times a \) (throat thickness) = 0.7 * leg length

(3) \(f_{vw,d} = f_u / (\sqrt{3} \times \beta \times \gamma_{M2}) \) \(\beta \): Table 4.1 (= 0.85 for S275)

5 Analysis, classification and modelling

Table 5.1 Joint modelling

6 Structural Joints connecting H or I sections

Table 6.1 Basic joint components
Table 6.2 Design resistance of a T-stub
Column Base plate
6.2.8.2, Figure 6.19
6.2.5 Equivalent T-stub in compression

(3) \(F_{C,Rd} = f_{jd} \times b_{eff} \times l_{eff} \)

(7) \(f_{jd} = \beta_j \times F_{Rdu} / (b_{eff} \times l_{eff}) \) \[\beta_j = \frac{2}{3} \]

EN 1992-1-1 Clause 3.1.6 (1)\[f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_c; \alpha_{cc} = 1, \gamma_c = 1.5 \]

NCCI SN037a \(f_{jd} = \beta_j \times \alpha \times f_{cd} \) \[(\alpha = 1.5) \]

\[
A_{c,0} = \text{MAX} \left(\frac{N_{j,Ed}}{f_{jd}} \times \frac{1}{h_c b_{fc}} \left[\frac{N_{j,Ed}}{f_{jd}} \right]^2 \right) \]
Large projection
Short projection (when $A_{c,0} < 0.95bh$) base plate
Select plate dimensions – determine c (Figure 6.4)
Min. outstand: t_f

6.2.5(4)
$$t_p = c \sqrt{\frac{3f_{jd}Y_{M0}}{f_y}}$$
EN 1993-1-5 Plated structural elements

Section 6 Resistance to transverse forces (web bearing and buckling)

Figure 6.1 k_F

6.2 Design resistance $F_{Rd} = (f_{yw} L_{eff} t_w) / \gamma_{M1}$

$L_{eff} = \chi_F l_y$

6.3 Length of stiff bearing

6.4 Reduction factor $\chi_F = \frac{0.5}{\lambda_F} \leq 1.0$

\[
\overline{\lambda}_F = \sqrt{\frac{l_y t_w f_{yw}}{F_{cr}}}
\]

$F_{cr} = 0.9 k_F E \frac{t_w^3}{h_w}$
6.5 Effective loaded length
\[m_1 = \frac{f_{yf} b_f}{f_{yw} t_w} \]
\[m_2 = 0.02 \left(\frac{h_w}{t_f} \right)^2 \text{ if } \frac{\bar{\lambda}_F}{\Lambda_F} > 0.5, \]
\[0 \text{ if } \frac{\bar{\lambda}_F}{\Lambda_F} \leq 0.5 \]

\(l_y \) is the minimum of:
\[l_e + t_f \sqrt{\frac{m_1}{2} + \left(\frac{l_e}{t_f} \right)^2} + m_2, l_e + t_f \sqrt{m_1 + m_2} \]

\[l_e = \frac{k_F E t_w^2}{2 f_{yw} h_w} \text{ but } \leq s_s + c \]

6.6 Verification
\[\eta_2 = \frac{F_{Ed}}{(f_{yw} L_{eff} t_w) / \gamma_{M1}} \leq 1 \]
Effective lengths

Truss members: EN 1993-1-1:
Annex BB.1.1: $L_{cr} = L$ (for chord members)
Annex BB.1.2 (angles as web members):

\[
\lambda_{\text{eff},v} = 0.35 + 0.7 \lambda_v \\
\lambda_{\text{eff},y} = 0.50 + 0.7 \lambda_y \\
\lambda_{\text{eff},z} = 0.35 + 0.7 \lambda_z
\]

Members in compression – ends held in position (BS5950 – in absence of EC3 guidance)

<table>
<thead>
<tr>
<th>Restrained Condition</th>
<th>Effective Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both ends effectively restrained in direction</td>
<td>0.7L</td>
</tr>
<tr>
<td>Partially restrained in direction at both ends</td>
<td>0.85L</td>
</tr>
<tr>
<td>Restrained in direction at one end</td>
<td>0.85L</td>
</tr>
<tr>
<td>Not restrained in direction at either end</td>
<td>1.0L</td>
</tr>
</tbody>
</table>
Members in bending – compression flange laterally restrained, nominal torsional restraint against rotation about longitudinal axis at supports (NCCI SN009a)

<table>
<thead>
<tr>
<th>Support conditions</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both flanges fully restrained against rotation on plan</td>
<td>0.7</td>
</tr>
<tr>
<td>Compression flange fully restrained against rotation on plan</td>
<td>0.75</td>
</tr>
<tr>
<td>Both flanges partially restrained against rotation on plan</td>
<td>0.8</td>
</tr>
<tr>
<td>Compression flange partially restrained against rotation on plan</td>
<td>0.85</td>
</tr>
<tr>
<td>Both flanges free to rotate on plan</td>
<td>1.0</td>
</tr>
</tbody>
</table>
NCCI SN005a:

Simple construction – assume loads applied at 100 mm from face of column (flange or web). Resulting moment can be distributed between upper and lower levels in accordance with stiffness.
End Plate NCCI: SN013, SN014
Use full depth end plate if $V_{Ed} > 0.75 V_{c,Rd}$
Min. number of bolts = $V_{Ed}/75$

Plate dimensions

<table>
<thead>
<tr>
<th>Beam depth</th>
<th>t_p (mm)</th>
<th>b_p (mm)</th>
<th>Cross-centres (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 500 mm</td>
<td>8, 10</td>
<td>150</td>
<td>90</td>
</tr>
<tr>
<td>> 500 mm</td>
<td>10</td>
<td>200</td>
<td>140</td>
</tr>
</tbody>
</table>

Weld size (S275):

<table>
<thead>
<tr>
<th>Beam web (mm)</th>
<th>9</th>
<th>12</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throat (mm)</td>
<td>4</td>
<td>5.5</td>
<td>7</td>
</tr>
<tr>
<td>Leg length (mm)</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>
Bolts in shear: Shear resistance multiplied by 0.8 to account for presence of some tension in bolts

End plate in shear (gross section): Shear resistance divided by 1.27 to allow for bending moment in plate

Weld design: Shear resistance divided by 1.27 to allow for bending moment in plate

End plate in shear (block shear): may need to consider $V_{\text{eff},1,Rd}$ (3.10.2 (2)) and $V_{\text{eff},2,Rd}$ (3.10.2 (3))

End plate in bending – when bolt cross-centre distance is large, bending in plate reduces shear resistance

Beam web in shear to be checked for depth = plate depth
Weld design $a \geq 0.39 t_{w,b1}$

Ductility requirements:

$$t_p \leq \frac{d}{2.8} \sqrt{\frac{f_{ub}}{f_{y,p}}}$$